ENERGY THEOREMS IN STRUCTURAL MECHANICS

by
A. Jennings™

1. Introduction

Various theorems of strain energy, complementary energy, potential
energy and virtual work have been used extensively in the field of structural
analysis. Attempts which have been made to collect and relate all the
various theorems [1-5] tend to show that the field of application of some
of the theorems overlap. In cases where deflection or deflection compat-
ibility relationships are required then the use of complementary energy
[6] ensures a wider range of application than the use of theorems in-
volving strain energy because the first theorem of complementary energy
is applicable in cases where nonlinearities exist in the material stress
strain characteristics.

When considering structures in which the deformations are not small,
then none of the established energy theorems used in the conventional way
will yield deflection or deflection compatibility equations. The origin of
this weakness stems from the nature of complementary energy, for, unlike
strain energy, it is not a form of potential energy. Westergaard [7] and
Charlton have shown that complementary energy is not conserved for struc-
tures undergoing gross deformation. However Libove [8], Charlton [9]
and Levinson [10] have shown that it is possible to develope new theorems
or adapt existing ones to cater for the case of gross deformation. Although
achieving the same result their approach is entirely different, Libove de-
fines a new form of complementary energy and developes a theorem of
stationary total complementary energy which is contrasted with the sta-
tionary principle of total potential energy, whereas Charlton uses the prin-
ciple of virtual work in an unconventional way. It would appear necessary
that any new enevgy theovems ovr principles should be discussed in as many
ways as possSible befove they can take their proper place alongside the
established theovems. The present paper is continuing this discussion by
considering the following questions:

a) It is really necessary to increase the scope of the energy theorems?

b) What is the simplest form to present any new theorems?

¢) How should such theorems be justified? :

d) What is their relationship to the existing theorems?

In order to discuss the necessity of increasing the scope of energy the-
orems some equilibrium and compatibility equations are developed which
can arise in the analysis of a freely hanging cable.

Fig.1l. A freely hanging cable.
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2, The Free Cable

The freely hanging cable can be analysed by the force method allowing
for gross deformations [11,'12]. Consider the cable shown in Fig.1, which
hangs between two supports A and E and carries three vertical loads Wi,
Wy and W3 at B, C and D respectively. Assuming that the cable has no
bending stiffness it will adopt a series of straight lines between the points
of load application. Its behaviour is similar to a chain of bars and when
completely unloaded its position in space is undefined. However, when a
load has been applied to the cable its subsequent characteristics are sim-
ilar to that of a structure, in that it deflects finite amounts under addi-
tional load, it can store energy and return to its original equilibrium po-
gition when the additional load is removed. A sgignificant problem would
be that of determining the position of the cable for a given set of loads.
An outline ‘of a force method analysis of the cable will now be given.

Fig.2. Statically determinate system comesponding to free cable.

Assume numerical values for H and V, the horizontal and vertical com-
ponents of the support reaction at A. Then the cable as shown in Fig.2
is statically determinate which means that the tension and slope of all the
cable links can be obtained by considering only statical equilibrium, giving

T,® = H2 + V%,

cos @, = H/T,, sin a; = V/Tq, (1)
T22 =H2+(V'W1)2:

cos a, = H/T,, sin a, = (V - W,)/T,,

etc

The strained lengths of the cable links can then be obtained and the span
s and rise r of the cable can be obtained from the following compatibility
conditions

1 ' 1 . !
s 1, cos a; + 1y cos a9+ 1y cos ag + 1y cOs ay

(2)

r 1'1 sin @1 *+ 1'2 sin ag +‘1§ sin ag + 145, sin a4
where 1{ is the strained length of cable link-i. _

In general the calculated span and rise will not be correct and it is nec-
essary to adjust H and V in such a way as to correct s and r. A rapid
procedure for adjusting H and V is to develope the linear flexibility equa-
tions which define the changes in span and rise, 6s and ér, in terms of
changes in the support reactions 6H and 6V, By putting s and ér equal
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to the required correction then linear estimates of the correct support re-
actions can be obtained. Errors arise through the nonlinear behaviour of
the cable and hence iteration is required until a suitable accuracy is a-
chieved.

One method of determining the flexibility equations associated with in-
cremental changes in the support reactions is to, first of all, obtain the
corresponding change in the cable link tensions. From eq.1l it is seen that

T,6T; = H6H + VéV
giving 6T, =cosa; 6H + sina; 6V

(3)

similarly 6T, = cos a, 6H + sin a, 6V
ete,

Then it is necessary to determine the change in slope of the cable links
and from these to deduce the change in span -and rise of the entire cable.

It is not the object of the paper to formulate the solution to the free
cable problem, the reason for extending the analysis as far as this is to
show the significance of egs. (2} and (3). These particular equations, when
written in matrix form, show an obvious relationship with each other.
Eq.(3) is

8T, cos @, sin a, [ 6H]

6T, _ | cos ag sin gy 6V (4)
6T3 cos az sin aj

6Ty cos a4 sin ay

and eq.(2) is
s _ | cos @ cos ay cos @3 cos a, 1y

. . . . t

r sin o, sin @9 sin @3 sin a4 1,

This correspondence of these equations could be explained as coincidence,
however similar results are obtained for other cable configurations and also
for pin-jointed frame problems in which gross deformation is taken into
consideration, :

Transposed relationships between the matrices involved in equilibrium
and compatibility equations are a well known feature of matrix structural
analysis, but in other cases the reason for this correspondence can be
justified by reference to appropriate energy theorems. However inn the case
under .consideration none of the widely accepted energy theorems is ap-
plicable. Because incremental changes in the force system are involved,
all but complementary energy theorems must be excluded. But the com-
plementary energy theorems must be excluded. But the complementary
energy for the cable cannot be obtained because the unloaded position of
the cable is indeterminate and due to gross deformation the first theorem
of complementary is not valid.

3. The Relevance of New Energy Theorems

It would be of advantage if the structural analyst were to be aware of
any relationship between the equilibrium and compatibility equations which
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arise in the particular problem under consideration. Such relationships could
then be used either to save time in the analysis or as a partial check on
the equations used, However, unless any underlying energy theorems are
properly enunciated then it would not be possible to forsee the situations
in which these equations would correspond. In cases where approximations
are made about the force system to produce a small number of variables
in an analysis, the need to develope energy theorems to cater for the case
of gross deformation is even more pronounced,

It may be true that for most structures undergoing gross deformation it
is simpler to adopt a displacement method analysis. However the problem
of the free cable tends to suggest that this may not always be so. The
number of unknown forces for the free cable is always two no matter how
many vertical loads are applied to the cable, and therefore, a force method
solution would seem to be particularly suitable.

The name 'gross deformation' may be misleading to the extent of giving
the impression that it would only apply to deformations beyond those usually
tolerable in real structures. Whereas this might normally be true, it is
necessary to use gross deformation theory whenever the equilibrium equa-
tions for the structure are affected by its deflection. Thus it may be rel-
evant to cable and suspension structures and also to structures near to
the buckling condition,

4. Basic Energy Theovems

Of the accepted energy theorems in structural mechanics the theorem
of minimum total potential energy and the principle of virtual work appear
to be the most fundamental. The theorem of minimum total potential energy
follows from the principle of conservation of energy. If energy is not con-
verted into heat by internal or external friction then small movements of
a structure or mechanism will tend to result in interchange entirely be-
tween potential and kinetic energy. The system will only remain in stable
equilibrium if all possible small movements result in an increase in po-
tential energy. This theorem hardly needs any elaborate justification as
simple illustrations such as the 'ball in bowl' suffice.

Application of the theorem of minimum total potential energy to structures
involves introducing the concept of strain energy to describe the work done
on the structure on account of the movement of the applied forces already
on the structure as straining takes place.

The principle of virtual work for a conservative system is equivalent
to the stationary part of the theorem of minimum total potential energy,
and the normal justification would similarly be by reasoning that any virtual
displacement which causes a decrease in potential energy must imply an
increase in kinetic energy of the system and therefore cannot occur if the
system is in equilibrium. However the implication that the principle of
virtual -work is just an alternative way of stating part of the theorem of
minimum total potential energy is not completely true firstly because the
principle was known before the principle of conservation of energy [13] -
and secondly because it can be successfully applied to nonconservative sys-
stems. Virtual work can be applied to the case of a block at rest on a
rough inclined plane. The forces on the block are assumed to remain con-
stant over any virtual displacement of the block irrespective of whether
the forces would remain constant over an actual displacement however
small, or even whether such an actual displacement could take place. Thus
a virtual displacement of the forces in a direction normal to the inclined
plane would be acceptable even though the block could not make this move-
ment. A justification of the use of virtual work for nonconservative sys-
tems would be that the forces are assumed to be conservative over the
virtual displacement, and the fact that the actual forces do not behave
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in the same way does not affect the actual equilibrium conditions deduced,

5. A Virtual Work Principle for Incvemental Forces

The principle of virtual work can be written as follows: If a body or
system of bodies is in equilibvium and is given an arbitrary incvemental
dzysplacement, the work done by the extevnal forces acting on the system
in this displacement is zevo. In the interpretation of this principle it is
understood that only displacements are considered in which the various
parts of the system remain compatible with each other.

An alternative virtual work principle involving changes in the forces rather:
than changes in displacement could be stated as follows: If a system of
bodies is such that the position of all the bodies are mutually compalible,
than for amy arbilrary incremental change in the forces consistent wilh
equilibrvium the wovk vequived to apply the incvemental forvces to the sys-
tem is zervo.

Thus the roles of compatibility of displacements and equilibrium of forces
have been interchanged.

Fig.3. Five bar chain corresponding to free cable.

In order to apply this principle to the cable problem it would be neces-
sary to include the supports in the system. The cable and support system
could be considered as the five bar chain shown in Fig.3 in which the fifth
bar is rigid and held firmly in position. Suppose that there is a lack of
fit at the left hand end of the cable involving displacement components u
horizontally and v vertically. Then if incremental changes in the forces
6H and 8V are made the work done in applying these increments is equal
to

§W = -usH - véV (6)

The negative values arise because separation of the incremental forces to
the positions as shown in Fig. 3 involves a work output by the forces rather
than work being done on them. If u and v are zero then the work done in
applying the incremental forces 6H or 6V to the system are both zero.
Because the cut system is statically determinate all the possible variations
in the forces consistent with equilibrium have been considered and there-
fore the principle is upheld in this case.

A further example in which the principle can be seen to be upheld is
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the doubly symmetrical pin-jointed frame shown in Fig. 4

2

lac

B

45

Y

D b. c.

Fig.4. A pin-jointed frame

a) unloaded
b) loaded
c) statically determinate configuration.

which is assumed to undergo gross deformation. Because gross deformation
is taken into account the forces in the members-can only be obtained by
means of joint equilibrium when two forces are known. A force method
analysis of the frame could be achieved by considering the members AC
and BD cut with forces of T and P acting ross the cuts, and then ad-
justing the values of T and P until lack of fit across the cuts have been
eliminated. If overlap occurs in the cut members to the extent of u in AC
and v in BD then the work done in applying the increments §T and 6P to
the forces acting across the cuts is

6W = -uéT - véP (7)

Asgs the only possible changes in the force system consistent with equilibrium
involve changes in T or P and the work expression is zero when u = v = 0
then the principle is again upheld,

6. Application of the Virtual Wovk Prvinciple for Incvemental Forces.

In order to use this principle it is necessary to obtain the work done in
applying the incremental forces system by summing the work done in ap-
plying the incremental forces to the individual bodies in the system. One
method of evaluating the work done in applying incremental forces to pin-
ended members is to consider the horizontal and vertical components of
the incremental forces as shown for member i in Fig.5. If the incremental

_ o

A

Fig.5. Pin-ended bar with horizontal and vertical force increments .



Energy theorems in structural mechanics 313
234

forces are moved onto the member from any arbitrary origin, say 0 in
Fig.5, and if X; and Y; are the horizontal and vertical projections of the
member strained length then the work done by the incremental forces 6H;
and 6V; during application is

§W,; = - X;86H; - Y;6V; (8)

In the case of the five bar chain (Fig.3), with link incremental forces de-
fined in Fig.6 then from equilibrium

SHe4 Vs

SHg

SJW\" s
N VA ) Ay
£ ‘?H/r:‘*"“ T

Fig.6. Five bar chain with horizontal and vertical force increments

§H, = 8Hy = 6H, = 6H, = -6H, = 6H } (9)
and 6V = 8Vy=6Vy= 06V, = -6Vy=6V
Hence in applying the incremental force 6H the work done is

8W = ~(X1+ Xg+ X3+ X,- s)6H = 0 (10)
which gives the compatibility condition

X1+ Xg+ Xg+ X, =8 (11)
and in applying the incremental force 6V the work done is

W = -(Y; + Yo+ Yy + Y, - r)6V = 0 (12)
which gives the compatibility condition

Y, + Yo+ Y3+ Y,=r (13)

Equations (11) and (13) are the only equations needed to ensure compaf-
ibility of the system. \

Fig.7. Pin-ended bar with axial force increments
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An alternative way of evaluating the work done in applying incremental
forces to pin-ended members is to consider components parallel and per-
pendicular to the bar axis (Fig.7). The components of force §R; which act
perpendicular to the bar axis are present to take account of possible changes
in the inclination of the bar. However they can be applied without doing
work as the forces only need to be moved perpendicular to their line of
action. Hence the work done in applying the incremental forces

= 1

SW. = 18T, (14)
and for the five bar chain

-(1] 86T, + 156T, + 13"51:3 +1,8T,) + s6H + réV = 0 (15)
which in matrix form is

[s r] [51{] = 1} 15 15 1] 8T,

6
A% 6T, (16)
6T3
8T,
Substituting for {éTl 6T, 6T, 6T4} from equation 4 gives
[s ] [ou] = [1 15 15 14] [eos ay sin oy | [H
oV cos a, sin a, oV
(17)

cos @3 sin ag

cos ay sin a,

As this equation is valid for 6H or 6V applied separately then {6H 6V}
may be cancelled and on transposing equation 5 is obtained.
Considering the pin-jointed frame of Fig.4, the application of the virtual
work principle for incremental force gives
'

41" o7 -1 8T -1 6P =0 (18)
AB AC BD

AB

But from joint equilibrium
8T, = -15in@ 6T - icosf 6P (19)
Hence

(-21'

. ! 1 1 _
ap SR O+ 1 BT + (—21AB cos 9§ + lBD)éP =0 (20)

As this equation-is true for increments 6T and 6P applied separately

1 . 1 .
Iy = 21,5 sin 6 (21)
and léD = 211’§B cos 0

These compatibility equations can be seen to be valid by inspection of Fig. 4b.
What is more they are the only compatibility equations necessary to ensure
that the frame will fit together in its deformed state.

When using the principle of virtual work for incremental displacements
it is usual to assume -that by satisfying the virtual work principle for all
possible virtual displacements a sufficient as well as necessary condition
for equilibrium has been obtained. When considering the principle of virtual
work for incremental forces then any incompatible state involves an un-
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closedloop in the system around which may be specified a set of incremental
forces in equilibrium. Hence there must be a possible variation in the force
system for which the work done in applying the forces will not be zero.
The corollary of this is that if the principle has been upheld for all possible
variations in the force system then compatibility is assured, As with the
conventional virtual work principle this new principle is applicable whether
or not the system is conservative.

7. Stress Emnergy

Because energy is the capacity for doing work there is likely to be an
energy theorem which has the same effect as the principle of virtual work
for incremental forces. In order to develope such a theorem it is useful
to introduce a new energy form which could be called stress enervgy, and is
defined as the total work done in applying the force system to the structure or
mechanism. Itis assumed that the forces are transferred from any arbitrary
origin to the structure without any change of magnitude or direction and
at a vanishingly slow rate so that no kinetic energy is developed. For a
conservative system it must be possible at any time to restore all the
loads to the origin without any overall net gain or loss in energy and hence
the work done in applying the forces to the structure must be recoverable.
It is possible for the stress energy to be negative, implying that work-is
done by the forces in being transferred from the origin onto the structure,
this work being required again if the forces are to be moved back to the
origin.

Fig.8. A two bar mechanism
a) fully loaded
b) partially loaded

The uniqueness of the stress energy function can be illustrated by con-
sidering the two bar mechanism ABC shown in Fig.8a. Consider the case
where the bars are inextensible of length 1, and the stress energy is re-
quired for the two loads shown. The loads may be applied simultaneously
at the same rate in which case the geometry of the bars will remain un-
altered and the stress energy will be

S=-(1+7-1?>W1-—V—12-.Wl=-(1+\/§')W1 (22)

If, on the other nand, the horizontal load is applied before the vertical
load, the geometry of the system will change during loading. When the
horizontal load is being applied the bars will both be horizontal and there-
fore the stress energy of the system after all the load at A has been applied
will be -2W1. Considering now the situation when load w has been applied
at B in addition to the full load at A, the vertical projection of BC will
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wl
be —————— (Fig.8b) and the addition to the stress energy due to an
(W? + wt
addition dw will be
-wldw
a4 = — (23)
(W2 + wi)l

Hence the total stress energy is

w wl dw
S = -2W1 - 5 —  — = (1 + V2) W1 (24)
o (W2 + Wz)% '

which corresponds to the result obtained when the loads were applied si-
multaneously. If the bars are not rigid, but linear elastic with Youngs
modulus E and cross-sectional area A, then whichever way the two loads
are applied the stress energy will be

3W21
2EA

(25)

S = -(1 +V2) Wl -

If there is conservation of energy then the stress energy of a system
of bodies must be equal to the sum of the stress energies of the compo-
nent bodies. Therefore a method of evaluating the stress energy of a structure
is to sum the components arising from the members.

In the case of a pin-ended bar of unstrained length 1 and extension e
under load t, the increment to the stress energy arising from an increment
tot is

dS = -(1 + e)dt (26)

Therefore if t is increased from zero to T the stress energy for the bar
under the load T is given by

T
S = - J (1 + e)dt (27)
=0
For a bar in tension having nonlinear stress-strain characteristics the
stress energy could be represented by minus the area ABCD in Fig, Sa.
For a nonlinear bar in compression the stress energy could be represented
by the Area ABCD in Fig. 9. If the bar has linear stress-strain charac-
teristics with Youngs modulus E and cross-sectional area A then

T2
2EA

S = -Tl - (28)

Both equations 27 and 28 are valid for compression members as well as
tension members as long as T and e adopt negative values for compression.

In the example of F'ig. 8 the stress energy of the bars allowing for elas-
ticity are given by

2
= Wl
Sap = -Wl - 9E&
Y (29)
- w°l
Spc = -2Wl - 47
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Fig.9. Stress energy for a pin-ended bar with nonlinear load deflection characteristics
a) in tension
b) in compression

Summing these stress energies gives the total stress energy which agrees
with equation 25.

8. A Theovem of Stvess Energy

The stress energy of a structure or mechanism can always be written
as a function of a set of independent forces. In the case of structures or
mechanisms which are statically indeterminate when undergoing gross de-
formation some of the independent forces will be unknowns. The state of
the free cable of Fig.l is entirely defined by the forces H, V, W;, Wg,
and W3, hence the stress energy could be specified in terms of these forces.
Similarly the stress energy of the pin-jointed frame of Fig.4 could be ob-
tained as a function of ¥, T and P.

Each independent force together with the corresponding reaction and in-
ternal forces could be considered as an equilibrating force system. Where
the applied forces are internal forces (e.g. T or P of Fig.4) introduced
at imaginary cuts in the structure then the force system could be consid-
ered as self-equilibrating. It is to be noted however, that the force systems
do not appear to be equilibrating so far as moment equilibrium is con-
cerned. This apparent anomaly arises because the line of action of the
forces. are not Ifixed but automatically adjust in such a- way thaj all moment
equilibrium equations are satisfied.

Considering the stress energy of a structure or mechanism as a function
of n independent forces than

S =S(F ..... F. ..... F ) (30)

H infinitely small increments are added to the forces then the increment
to the siress energy is
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I
68 = Y V., 6F,
) j=1 ] )
where V; is the separation between the force F; and its reaction. But from
equation 30

= g 98
65 = & oF, SF, (32)

As equations 31 and 32 must be true for any possible variation in the force
system then

95 _
oF. - Vi (33)
]

for any value of j.

This could be stated as the following theorem:
The differential coefficient of the strvess energy with respect to a force is
the distance, measured pavallel to the line of action of the force, which
separates the force and its veaction.
In this definition it is implied that a positive separation is one in which
the force and its reaction have a positive potential energy.

In the case of a pin-jointed frame having members then

m .
S= L S (34)
i=1

where S; is the stress energy of member. i.
But S; is a function of T; only, hence

m dS; 8Ti
=L 4T, oF,
as;
Ag — = _]_i (36)
dr,

where l; is the strained length of the member
mo
V.= - L lj — (37)

Consider the cable of Fig.2 with F; set to H and V in turn, then equation
37 gives

4 ' T 4 !
s - XL 1lj—, r=- X lj— (38)
=l 8H = v
» oT, T,
Using the equilibrium equation 3 to obtain —— and —— gives
ov LAY
4, 4
s = - i§1 1; cos a; , r = - i§1 1; sin aj (39)

which is an alternative form for the compatibility equations 2.

Considering the pin-jointed frame of Fig.4, then if V. and V, are the
overlaps at the cuts in members AC and BD respectively, equation 37
gives
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-

o . a 8T,; , 8T,y , 8Ty
T AB T AD 5T BC 5T
v o 2T T BTy
an = - - -
p AB P AD P BC ap

7

Using the equilibrium equation 19 and putting V; and Vp equal to zero gives

! ) 1
VT—ZIABsmO-lAD—O

' I

and VP -21AB cos 0 - lBD =0
which is a statement of the compatibility' equations previously obtained by
using the virtual work principle for incremental forces.

Thus the stress energy theorem can be used to obtain any of the results
previously obtained by the principle of virtual work for incrémental forces
and it can be seen that by applying ficticious forces any projected distance
can be obtained. For example if the projection V of the distance BC onto
a line with an inclination of 45° is required for the cable problem, then
the stress energy may be differentiated with respect to the pair of oppo-
sing forces P shown in Fig.10.

\/

Fig.10. Free cable with additional imaginary load.

9. Application to a Suspension Bridge Structure

Consider the simple suspension bridge structure shown in Fig.11, and
let it be assumed that
a) the deck girder is horizontal when it has not load acting on it,
b) small deflection theory is adequate for the deck girder,
c) the effect of hanger inclination can be ignored.

Fig.1l., A simple suspension bridge.
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This structure can be made statically determinate by cutting the cable
at the left hand support and inserting pin-joints into the girder at G, H
and J. By assuming that F is supported from A by a rigid wire and by
introducing redundant cable reactions H and V and redundant girder mo-
ments M;, M,, and M4, the structure shown in Fig.12 is obtained. If 01,

92 and 03 are the rotations of the hinges corresponding to M, MZ’ and

\Y

’/////////////q‘l

Fig.12, Statically determinate system for suspension bridge.

Mg, then the problem of analysis is to determine the values of the redun-
dax;ts such that the span and rise of the cable are correct and 6; = 6, =
= 3 = 0.

The stress energy for the structure may be evaluated. However it is
simpler to evaluate directly the increment in the stress energy for incre-
mental changes in the forces.

As couples are included in the force system it is necessary to determine
the increment in stress energy arising from an increment to a couple. A
couple M can be represented by a pair of equal and opposite forces P act~
ing at a distance y apart. If there is a small rotation 6 then with the di-
rection of the forces P unaltered, the work done in applying an increment
to the forces is - ydP (see Fig, 13). Hence the increment in stress energy

Fig.13, Loaded configuration of suspension bridge deck girder member.

for an increment to a couple M is
68 = -06M ' (42)

If 0,, 8, and 63 are the rotations of the hinges 1, 2 and 3, the incre-
ment to the stress energy due to increments in all the redundants forces
is

68 = -s6H - réV - GI(SM]_ - 626M2 - 936M3 (43)
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In order to evaluate the increment to the stress energy by summing the
contributions of the individual members it is necessary to have an expression
for the increment to the stress energy of a typical deck segment. Consid-
er the segment GH in which the end moments are Mgy and Mpyg, the end
rotations are Ogy and 6y, the sway is z and the shear force is R as shown
in Fig.13. The stress energy due to increments to the applied forces is

85 = - Ogy Mgy - Oug 6Myg - z6R (44)

But from equilibrium

, 1

Hence 65 = (0gy + 2)sMay - (6o - -3—) §M ug (46)

Defining GIGH and 6;{6 as the end rotations measured relative to the line GH
then

! i
68 = - GGH'SMGH - eHGéMHG (47)

which is equal to minus the change in complementary energy due toa change
in the end moments.

The total stress energy obtained by summing all the member contributions
is thus

6S = - D1.6T, - LO;6M; (48)

where the first summation is for e = AB, BC, CD, DE, AF, BG, CH,
and DJ and the second summation is for f = GF, GH, HG, HJ, JH, and
JK.

The hanger forces can be obtained by considering the equilibrium of the
various deck segments of Fig.12

T,p = M;/d

Tge = Wy + (-2M,; + M,)/d (49)
Ten = W, + (M, - 2M, + M,)/d

Ty = Wy + (M, - 2M,)/d

and the cable tensions can be obtained from the equilibrium of the edble

T2 = H+ [V - M, /4]
_ 2 2
Tgc =H" + [V - W, + (M1 - Mz)/d] (50)
2
Tép =H + [V - W, - W, + (M, - My)/a]?
Tge = H? + V-W, - W, - W + Ms/d:l2

Hence the following equilibrium forces for incremental forces may be ob-
tained:
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[ 6T sp cos @; sin @ . -sin @q/d 0 0 6H
8T cos ag sin o9 .« sin @g/d -sin ag/d 0 8V
6TCD CcOs a3 sin ag - 0 sin Q3/d -sin 0'3/(.'1 se e

Tpe cos a4 sin ay . 0 0 sin a,4/d 6%1
U ceee R 5M
8T 55 0 0 1/d 0 0 vl
8Tgg 0 0 -2/d i/d 0 4
6T ey 0 0 1/d -2/d 1/d
6 Tpy 0 0 0 1/d -2/d 61)
8M g 0 0 1 0 0
SMgy 0 0 1 0 0
6Mpg 0 0 0 1 0
6Myy 0 0 0 1 0
sMy 0 0 0 0 1
&M 0 0 . 0 0 1

K J L -

By substituting the values of the incremental forces fromeequation 51 into
equation 48 and equating the increment in stress energy to that of equation
43, it follows that
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r
,91 -
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| 63
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s e K] . e onw « s s e .. IICD
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| 0 0 -sin ag/d sin ay/d’ 0 0 1/d-2/dl000011L 1y
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9:GF

e

ol
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ol

| JKJ

(52)

The equations for s and r agree with the previously derived free cable
equations. A typical equation for hinge rotation is

0 = (1, - 21, + 1oy - 1, sin @) - 1. sin e,)/d + 65, + 6y
(53)

the validity of which can be checked by referring to Fig.14.
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Fig.14. Displaced configuration for two panels of suspension bridge.

10. Physical Significance of Stress Enevgy

The stress energy of a conservative structure is the total energy which
can be recovered by returning the loads back to an arbitrary origin. This
energy is stored in the form of potential energy of the applied forces V and
strain energy U, hence

S=V+U (54)

The stress energy is therefore the total potential energy of the system
consisting of the structure or mechanism and the loads acting on it, and
hence could be described by the alternative same system energy. Equation
54 can easily be verified for the case of the pin-ended bar in tension shown
in Fig.9a. The strain energy of the bar is given by Jftde which the area
of BCE of the load extension diagram. The final potential energy of the
applied forces is equal to T(l + e); Hence the area ABDE is -V and U - S =
= -V which agrees with equation 54. A similar analysis for the pin-ended
bar in compression shown in Fig, 9b also upholds equation 54.

The name stress energy is suggested because of certain complementary
properties to strain energy. Both are forms of potential energy. If there
is a change in the displacement of a system with no change in the forces
then there will be no change in the stress energy but the strain energy may
change. On the other hand if there is a change in the force system without
any movement of the structure or mechanism then there will be no change
in the strain energy but the stress energy may change. The theorem of
the differential coefficient of the stress energy 8S/ 8F; = V; which is ap-
plicable to nonlinear structures undergoing gross deformation may be con-
trasted with Castiglianos theorem of the differential coefficient of the in-
ternal work (Part I) 8U/8V, = P. (in which V. is the displacement corre-
sponding to the force Pj), as this'is also applicable to nonlinear structures
undergoing gross deformation.

11. Liboves Complementary Enevgy Method

Libove [8] derives a form of complementary energy (called CE) which
is just the negative of stress energy and exhibits similar differential prop-
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ties. Libove also defines a theorem of stationary total complementary energy
which is compared with the stationary part of the theorem of minimum total
potential energy. However any implication that CE is a form of energy
having a dual role to potential energy should be resisted, as CE is itself
the negative of a form of potential energy.

The alternative use of stress energy is proposed in this paper because
a) there would be no confusion with Engesser's original complementary
energy concept which still remains useful for situations in which structural
deflections can be considered small.

b) stress energy is a positive form of potential energy as far as the sys-
tem under consideration is concerned.
¢) the title makes use of the duality in its relationship with strain energy.

Libove's theorem of stationary total complementary energy was stated
to be weak because extraneous solution could sometimes be found in which
the total complementary energy was stationary but which did not constitute
compatible states for the system. Subsequent discussion on this subject
[14,15] centred around a problem which has been used in this paper and
is illustrated by Fig.4, and for which Libove records an extraneous so-
lution when F = T and P = 0, Libove's original difficulty arose because
the complementary energy was differentiated with respect to T and 6.
Although 6 is not a force, a variation of 6 will result in a variation in
the force system in all cases except the case where the force in AB is
zero. Hence differentiation with respect to 8 will give correct results
except when the force AB is zero which is presicely the situation in which
Libove obtained the extraneous solution.

If, in the same example, the total complementary energy is differentiated
with respect to T and P then, with members all of area A and Youngs
modulus E and writing p = P/EA, t = T/EA and £ = F/EA, the following
equations are obtained

2
—_——+ 2+ 1| =V2
’:(p“(f-t)z)i' :{

2 (55)
(f-t) | ————+ 2 + 1| = V2{1 + f)
(p2+(£-t)2)*
The correct solution in which
f-t
p = (586)
1 +f

can be obtained by division of these equations,

However in the particular case where p = 0 and f-t = 0 the left hand
sides .of equations 55 are indeterminate and it may at first sight appear
impossible to tell that there is not an extraneous solution,

The physical significance of this situation is that because no force is
present in the member AB its angle is indeterminate. The compatibility
conditions as specified by equation 21 can each be satisfied separately by
choosing appropriate values of 6 but the same value of 8 will not satisfy
both equations simultaneously. Examination of equations 55 will reveal that
if p and f-t both tend to zero then

P 1
(p2+(f-t)2)}  VZ

£t 1+ f (57)
and =
(p2+(f-t)2)% V2
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Squaring and adding gives
1 =45 [1+(1+1£)2) (58)

Equation 58 can only be satisfied in the trivial case where f = 0 and the
impossible case where f = -2,

Thus, no extraneous solutions exist as long as the total complementary
energy is differentiated with respect to changes in the force system only.
This result also applies to differentiation of the stress energy and in the
statement of the theorem it has been stated that differentiation is to be
carried out with respect to a force.

12. Charlton's Virtual Work Method

Charlton [9] describes a method of obtaining the same results that can
be obtained by using CE or stress energy. The technique adopted is to
consider a virtual displacement of the structure or mechanism to one twice
the size, and then to replace the forces in the resulting virtual work
equations by their incremental values. The justification for the second step
is explained in an appendix to Reference 3 added in 1964. In comparison
with the stress energy method it is seen that the work required to move
the force increments from an arbitrary origin to the structure will be equal
to the work required to move the force increments from the structure to
one twice the size.

13. Conclusion

Correspondingrelationships between certain incremental equilibrium equa-
tions and compatibility equations can be derived for structures undergoing gross
deformation. Investigation of these relationships leads to the development
of a new principle of virtual work and a form of energy called stress
energy. The concept of stress energy has been developed by considering
" the potential energy of the forces applied to the structure or mechanism
and its relationship to Libove's from of complementary energy and Charlton's
virtual work method has been discussed.

It is hoped that this paper helps to clarify the situation with regard to
the use of virtual work methods and energy theorems as applied to struc-
tures undergoing gross deformation, whilst at the same time indicating a
possible application to cable and suspension structures.

ACKNOWLEDGEMENTS

The author would like to thank Professor Charlton for valuable discus-
sions on this subject.

References

1, Matheson,].A,L.: Hyperstatic Structures. Butterworths Publications, London, 1959.

2. Argyris,]J.H, and Kelsey,S.: Energy Theorems and Structural Analysis. Butterworths Publications, London,
1960.

3. Charlton,T.M.: Energy Theorems in Applied Statics. Blackie & Son. London, 1959,

4. Williams,D.: An Introduction to the Theory of Aircraft Structures. Edward Armold (Publishers),

London, 1960.



326

10.

11,

12,

13,

14,

15,

. Sokolnikoff, I,S.:

Engesser, Fr.:

Westargaard, H. M. :

. Libove,C.:

Charlton, T.M.:

Levinson, M.

Jennings,A.:

O'Brien,T.:

Dugas,R.:

Jennings,A.:

Libove,C.:

A, Jennings

Mathematical Theory of Elasticity. McGraw-Hill, New York, 1956.

Ueber Statische Unbesimmte Trager bei Beliebigem Formanderungs - Gesetze
und uber den Satz von der Kleinsten Erganzungsarbeit. Z,d.Arch, -~ u.Ing.
Ver.Z.Hannover, Vol. 35, col. 733, 1889.

On the Method of Complementary Energy. Proc. ASCE. Vol. 67, pp. 199-227,
1941.

Complementary Energy Method for Finite Deformation, Journal ASCE, Vol,
90, No. EM6, pp. 49-71, December 1964.

Strain Compatibility Conditions of Grossly Distorted Structures by Virtual
Work. Civil Engineering, Vol. 58. pp. 325-326, 1963.

The Complementary Energy Theorem in Finite Elasticity. Journal of Applied
Mechanics, Vol. 32, pp. 826-828, December 1965.

The Free Cable. The Engineer, Vol. 214, pp.1111 and 1112, December,
1962,

General Solution of Suspended Cable Problems. Journal ASCE, Vol. 93,
No. ST. 1, pp 1-26, February, 1967.

A~History of Mechanics, Routledge & Kegan Paul, London, 1955,

Discussion of Complementary Energy Method for Finite Deformation by
C.Libove. Journal ASCE, Vol. 91, No. EM4, pp. 203-206, August, 1965,

Closure of Discussion on Complementary Energy Method for Finite Deformation,
Journal ASCE, Vol. 92, No. EM2, pp. 279-290, April, 1966,

[Received April 25, 1967]



